Better Together
ICEL 1004:2013
Emergency
Lighting Conversions – Safe, not Sorry!
The re-engineering of
standard luminaires to emergency use is a practice carried out far more in the UK than in any other parts of Europe .
Get the conversion wrong however and the consequences for installers,
specifiers and converters alike can be far reaching!
Throughout
mainland Europe , the specification of central
systems and dedicated emergency luminaires is the norm. In the UK, the
conversion of standard mains, LED or low voltage luminaires is more common,
allowing the specifier a number of aesthetic design advantages. This method,
known in the lighting lexicon as self-contained
emergency lighting conversions, does have a downside however. Poorly
designed, constructed and tested conversions can present significant
installation problems and pose a clear and present risk to public safety.
Unfortunately, the sometimes uncontrolled desire for cost-cutting combined with
badly conceived and or open specifications, leads to a conversion being produced
that at best ignores the complexity of the host luminaire and at worst becomes
downright dangerous.
How
to prevent problems
To
counter problems with bad emergency lighting conversions, the Industry Committee for Emergency Lighting
(ICEL) has, for the past eleven years, produced a registration scheme called
ICEL 1004. This scheme ensures that the converter produces compliant luminaires
in line with best practice then applies a 100% testing regime. ICEL 1004:2013 sets
out the requirements for the conversion of luminaires to emergency operation
and provides a clear understanding of the legal obligations confronting both
converter and user. The latest edition, launched in the past twelve months, has
been updated to include the emergency conversion of LED luminaires.
With
regular updates since 2003 users have become more au fait with the scheme, but
there are still poor quality conversions taking place and more still since the
launch of mainstream LED luminaires. It is necessary to continually revisit the
subject making sure that converters fully understand the importance of
compliance when manufacturing life saving products. The members of ICEL and
their colleagues in LIA are fully supportive of ICEL 1004:2013 and are
observing the procedures detailed within. It is now up to the rest of the
industry, contractors and conversion houses alike to catch up with ICEL and LIA
and put quality, life-saving emergency luminaires in all commercial premises
where occupants deserve the best.
In
this respect it is vital that emergency lighting products are not treated as
just another lighting fixture. They play a vital role in ensuring public safety
in the event of a complete mains failure, fire or other emergency and in
consequence need to be given the same priority as other life saving measures. Self-contained
conversions carried out to the specification of ICEL 1004:2013 will ensure safety
and performance of the emergency lighting luminaire.
Making
a conversion
At
the very least, poorly performing conversions will require continued remedial visits
to site by the electrical contractor. At worst, following an incident where
death or injury occurs due to emergency lighting failure, the specifier or
installer could find themselves in court.
In
most cases the installer will leave the conversion to the manufacturer or a
third party conversion house, but there is still a responsibility to ensure
that the work has been carried out correctly. Of the hundreds of conversion
shops in the UK only a handful have signed up to the ICEL 1004:2013 code of
practice. This is not to say they are doing a bad job, it’s just that they do
need auditing.
The
conversion of mains luminaires to emergency is a very skilled activity and
people need to ensure that the work is carried out correctly. If not then the
chances are the luminaire will fail in both mains and emergency. For example,
if the battery overheats due to other hot components such as the light source being
too close, the converted luminaire will no longer function, when required, in
emergency mode. If the converter does not apply the correct testing procedure
then the possibility of over-heating can never be realised as a potential
issue.
Components
used in the conversion of mains luminaires to emergency must comply with BS/EN/IEC
safety and performance requirements:
The
emergency lighting control module for fluorescent lamps should be compliant
with BSEN 61347-2-1, BSEN 61347-2-3 and BSEN 61347-2-7 for safety and BSEN
60925 for performance. In the case of LEDs, BSEN 61347-2-1 and BSEN 61347-2-13
for safety and BSEN 62384 for performance. All components shall be installed
and tested in accordance with the supplier’s instructions.
Batteries
should be compatible with the emergency lighting control module and be shown to
have a design life of four years when under normal operation within a luminaire
or remote enclosure.
An
important point to bear in mind is that if a standard CE-marked luminaire is
altered in any way, then the original luminaire manufacturer’s CE-marking
becomes invalid and it is the responsibility of the converter to ensure future
CE compliance. This means that all emergency converted luminaires must be
tested on completion of the conversion, a new CE-mark applied and a Technical
Construction File produced to support the new CE conformity. This can be
carried out by the converter or a third party test house. The reality is that
this does not always happen and many converted luminaires carry a CE-marking
that bears no relevance to the completed work.
The
majority of conversion houses do not do anything to fulfil the CE requirement.
When the luminaire arrives from the OEM, it should meet the essential
requirements of the relevant Directives e.g. the Low Voltage Directive (LVD) and the Electro Magnetic Compatibility Directive (EMCD). The conversion
house will change the wiring, move components, introduce new parts as necessary,
but without a correct testing procedure to ensure thermal compliance, EMC and
electrical safety, they cannot be sure the luminaire conforms to the standards.
Testing
for potential trouble
These
regulations are not in place to add yet more bureaucracy, it is about people’s
lives. There are many ways a conversion can affect the performance of a
lighting product. It is only by testing that any potential problems can be
identified. For example, if the emergency control module added to the luminaire
is not compatible with the incumbent control gear then operational problems are
inevitable. Compatibility is even more relevant today with the launch of so
many LED light sources and methods by which the LED is driven. An incorrect
specification can easily lead to early light source, module or battery duration
failures, all very costly to repair and potentially dangerous.
Similarly,
emergency lighting products need to use fire retardant components and the
enclosure must comply with BSEN 60598-2-22 and a glow wire test of 8500C
(unless components are mechanically secured and will not come into contact with
a flammable surface). Many standard mains luminaires do not meet this stringent
requirement as the rules are different for non-emergency products. Lighting
controllers such as some prismatic diffusers will not pass the 8500C
glow wire test.
Today,
integral emergency conversions are not straightforward as in the past. With the
introduction of multiple lamp fixtures and/or more compact light sources such
as LED, it is inevitable that smaller lighting chambers will become too hot to
house batteries and chargers. These components will need to be installed within
fire retardant remote enclosures. Just a couple of degrees above designed
temperature limits can have a devastating effect on the performance and
reliability of emergency modules and battery sets.
With
the onset of more compact fittings as in the case of LED or T5 style
luminaires, space becomes such an important commodity. The design evolution of
emergency inverters and batteries has not seen a dramatic decrease in their size.
This invariably means that a conversion is not just a case of ‘shoehorning’ the
emergency components into the luminaire’s housing, it may well be necessary to
rearrange the existing components on a newly manufactured control gear chassis
or use a remote enclosure as stated above.
As
soon as you start to move the components around there is greater potential for
electrical problems. This is of particular concern when LED drivers or high frequency
electronic ballasts, both fixed and variable outputs, are being used because
the cable connections between the driver, ballast and lamp act very much like aerials
which may cause radio interference. Any conflicts with EMC that arise from this
will invalidate CE-marking as the converted luminaire will no longer conform to
the EMC Directive.
In Summary
Self-contained
conversions offer the user an extremely neat solution without the need to
install an additional luminaire in the ceiling for the sole purpose of
providing emergency lighting. This method certainly aids install-aesthetics,
reduces wiring costs and ensures a more robust and detailed warranty for the
end-user going forward.
For
all of the reasons explained, it is so important to ensure that the re-engineering
of mains luminaires for emergency use is taken seriously and carried out to the
required standards. The welfare and safety of occupants in shops, offices,
factories and airports etc. is paramount and therefore acceptance of poorly
conceived and badly manufactured emergency lighting conversions should not be tolerated.
ICEL 1004:2013 can be downloaded free of
charge from the ICEL website www.icel.co.uk
and it contains clear guidelines on how to ensure a safe and consistent
standard of engineering during modification of a wide range of standard
luminaires to emergency use.
No comments:
Post a Comment